Bayesian Regularization in a Neural Network Model to Estimate Lines of Code Using Function Points
نویسندگان
چکیده
It is a well known fact that at the beginning of any project, the software industry needs to know, how much will it cost to develop and what would be the time required ? . This paper examines the potential of using a neural network model for estimating the lines of code, once the functional requirements are known. Using the International Software Benchmarking Standards Group (ISBSG) Repository Data (release 9) for the experiment, this paper examines the performance of back propagation feed forward neural network to estimate the Source Lines of Code. Multiple training algorithms are used in the experiments. Results demonstrate that the neural network models trained using Bayesian Regularization provide the best results and are suitable for this purpose.
منابع مشابه
Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملImprove Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network
The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...
متن کاملمقایسه روشهای شبکه عصبی بیزین، شبکه عصبی مصنوعی و برنامهریزی بیان ژن در تحلیل کیفیتت آب رودخانهها (مطالعه موردی: رودخانه بالخلوچای)
The amount of total dissolved solids (TDS) is an important factor in stream engineering, especially study of river water quality. This study estimates the TDS amount of Belkhviachayriver in Ardabil Province, using bayesian neural network-, gene smart and artificial neural network. Quality variables include hydrogen carbonate, chloride, sulfate, calcium, magnesium, sodium and inflow (Q) in ...
متن کاملPrediction of structural forces of segmental tunnel lining using FEM based artificial neural network
To judge about the performance of designed support system for tunnels, structural forces i.e. peak values of axial and shear forces and moments are critical parameters. So in this study, at first a complete database using finite element method was prepared. Then, a model of artificial neural network (ANN) using multi-layer perceptron was developed to estimate lining structural forces. Sensitivi...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کامل